Development of a chitosan-gold nanocomposite based disposable pencil graphite electrode for the selective detection of thiram in peach juice

ASLAN N., ŞEN N., Akan M.

International Journal of Environmental Analytical Chemistry, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Publication Date: 2024
  • Doi Number: 10.1080/03067319.2024.2352650
  • Journal Name: International Journal of Environmental Analytical Chemistry
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Chemical Abstracts Core, Chimica, Compendex, Environment Index, Food Science & Technology Abstracts, Pollution Abstracts, Veterinary Science Database
  • Keywords: chitosan, gold nanoparticle, pencil graphite, sensor, Thiram
  • Police Academy Affiliated: Yes


Hazardous chemicals that are mostly employed in modern agriculture for pest management have caused long-term environmental accumulation as well as major issues with food safety and human health. So, there is an urgent demand for efficient detection methods for environmental monitoring. To do this, the most contemporary electrochemical sensor technology is suggested. In this study, a new electrochemical sensor has been developed to detect thiram (Th) fungicide, utilising a modified activated pencil graphite electrode (a-PGE) made from chitosan-gold nanoparticle polymer (Ch-AuNPs) for the first time. The Ch-AuNPs/a-PGE surface has been characterised using cyclic voltammetry (CV), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Following adjustments to experimental parameters, the proposed electrochemical sensor demonstrated a linear calibration curve within the range of 4.90–140 μM, displaying a rapid response to thiram with a detection limit of 1.15 μM. The sensor exhibited notable selectivity, stability, and reproducibility. To assess its practical utility, the sensor was applied to analyse thiram in peach juice, and the recovery process indicated its effectiveness as a practical, swift, and efficient tool in pesticide residue monitoring.