Characterization and properties of a new insensitive explosive co-crystal composed of trinitrotoluene and pyrene


Creative Commons License

Şen N., ASLAN N., Yüksel B., Teciman I.

Structural Chemistry, cilt.35, sa.2, ss.553-567, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35 Sayı: 2
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11224-023-02200-5
  • Dergi Adı: Structural Chemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, Chimica, INSPEC
  • Sayfa Sayıları: ss.553-567
  • Anahtar Kelimeler: Energetic co-crystals, Impact sensitivity, Non-covalent interactions, Pyrene, Trinitrotoluene
  • Polis Akademisi Adresli: Evet

Özet

A new energetic co-crystal of trinitrotoluene (TNT) and pyrene (PYRN) with a 1:1 molar ratio was prepared by a slow solvent evaporation technique. Co-crystal physicochemical properties have also been examined using optical microscopy, powder X-ray diffraction, single crystal X-ray diffraction, and differential scanning calorimetry. The results of single-crystal X-ray diffraction and non-covalent interaction calculations showed that non-covalent interactions (donor–acceptor π-π interaction) govern the structures of the TNT:PYRN co-crystal. The experimental and theoretical outcomes supported each other in the study. Thermal stability, impact sensitivity, and detonation performance of the co-crystal were investigated. DSC measurement indicates that the co-crystal has a melting point of 167 °C and a decomposition temperature of 293 °C, indicating outstanding thermal stability. The co-crystal was found to be less impact-sensitive than TNT using the BAM fall hammer instrument. Furthermore, the calculated detonation velocity and detonation pressure of the co-crystal are 5.29 km·s−1 and 8.48 G Pa, respectively. As an outcome, the TNT:PYRN co-crystal may be a promising intermediate energy explosive with low sensitivity and, as such, may be a desirable explosive alternative in the future instead of TNT for low-vulnerability formulations.